登录 |  注册
首页 >  中间件 · 框架 >  Kafka基础教程·入门学习笔记 >  Kafka快速整合Storm

Kafka快速整合Storm

在本章中,我们将学习如何将Kafka与Apache Storm集成。

storm.jpg

storm示例架构

Storm是什么?

Storm最初是由Nathan Marz和BackType团队创建的。 在很短的时间内,Apache Storm成为分布式实时处理系统的标准,用于处理大数据。 Storm速度非常快,每个节点每秒处理超过一百万个元组的基准时钟。 Apache Storm持续运行,从配置的源(Spouts)中消耗数据并将数据传递到处理管道(Bolts)。 组合 Spouts 和 Bolts 构成一个拓扑。

与Storm整合

Kafka和Storm自然而然地相互补充,它们强大的合作能够实现快速移动大数据的实时流式分析。 Kafka和Storm的整合使得开发者更容易从Storm拓扑中获取和发布数据流。

概念流程

喷口(spout)是流的来源。 例如,spout可能会读取卡夫卡主题中的元组并将其作为流发送。 Bolts消耗输入流,处理并可能发射新的流。 Bolts可以做任何事情,从运行功能,过滤元组,流聚合,流式连接,与数据库交互等等。 Storm拓扑中的每个节点并行执行。 一个拓扑无限期地运行,直到终止它。 Storm会自动重新分配任何失败的任务。 此外,即使机器停机并且信息丢失,Storm也可以保证不会丢失数据。

下面来看看Kafka-Storm集成API。 有三个主要类将Kafka和Storm结合在一起。 他们如下 -

BrokerHosts - ZkHosts&StaticHosts

BrokerHosts是一个接口,ZkHostsStaticHosts是它的两个主要实现。 ZkHosts用于通过在ZooKeeper中维护详细信息来动态跟踪Kafka经纪人,而StaticHosts用于手动/静态设置Kafka经纪人及其详细信息。 ZkHosts是访问Kafka经纪人的简单而快捷的方式。

ZkHosts的签名如下 -

public ZkHosts(String brokerZkStr, String brokerZkPath)
public ZkHosts(String brokerZkStr)

其中brokerZkStr是ZooKeeper主机,brokerZkPath是维护Kafka代理细节的ZooKeeper路径。

public KafkaConfig(BrokerHosts hosts, string topic)

参数

  • hosts - BrokerHosts可以是ZkHosts / StaticHosts。

  • topic - 主题名称。

SpoutConfig API

Spoutconfig是KafkaConfig的扩展,支持额外的ZooKeeper信息。

public SpoutConfig(BrokerHosts hosts, string topic, string zkRoot, string id)

参数

  • hosts - BrokerHosts可以是BrokerHosts接口的任何实现

  • topic - 主题名称。

  • zkRoot - ZooKeeper根路径。

  • id - spout存储在Zookeeper中消耗的偏移量的状态。该ID应该唯一标识的spout。

SchemeAsMultiScheme

SchemeAsMultiScheme是一个接口,它规定了从Kafka消耗的ByteBuffer如何转换为 storm 元组。它来自MultiScheme并接受Scheme类的实现。Scheme类有很多实现,一个这样的实现是StringScheme,它将字节解析为一个简单的字符串。 它还控制输出字段的命名。 签名定义如下。

public SchemeAsMultiScheme(Scheme scheme)

参数

  • scheme - 从kafka消耗的字节缓冲区。

KafkaSpout API

KafkaSpout是spout实现,它将与Storm整合。 它从kafka主题获取消息并将其作为元组发送到Storm生态系统中。 KafkaSpout从SpoutConfig获取配置细节。

以下是创建一个简单的kafka spout的示例代码。

// ZooKeeper connection string
BrokerHosts hosts = new ZkHosts(zkConnString);
//Creating SpoutConfig Object
SpoutConfig spoutConfig = new SpoutConfig(hosts, 
   topicName, "/" + topicName UUID.randomUUID().toString());
//convert the ByteBuffer to String.
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
//Assign SpoutConfig to KafkaSpout.
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

Bolt创建

Bolt是一个将元组作为输入,处理元组并生成新的元组作为输出的组件。 Bolts将实现IRichBolt接口。 在这个程序中,使用两个类 - WordSplitter-BoltWordCounterBolt来执行操作。

IRichBolt接口有以下方法 -

  • prepare - 为 bolt 提供执行的环境。 执行者将运行此方法来初始化spout。

  • prepare - 处理输入的单个元组。

  • prepare - 当bolt即将关闭时调用。

  • declareOutputFields - 声明元组的输出模式。

下面创建一个Java文件:SplitBolt.java,它实现了将句子分成单词;CountBolt.java它实现了逻辑来分离唯一的单词并计算它的出现次数。

SplitBolt.java

import java.util.Map;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;
public class SplitBolt implements IRichBolt {
   private OutputCollector collector;
   @Override
   public void prepare(Map stormConf, TopologyContext context,
      OutputCollector collector) {
      this.collector = collector;
   }
   @Override
   public void execute(Tuple input) {
      String sentence = input.getString(0);
      String[] words = sentence.split(" ");
      for(String word: words) {
         word = word.trim();
         if(!word.isEmpty()) {
            word = word.toLowerCase();
            collector.emit(new Values(word));
         }
      }
      collector.ack(input);
   }
   @Override
   public void declareOutputFields(OutputFieldsDeclarer declarer) {
      declarer.declare(new Fields("word"));
   }
   @Override
   public void cleanup() {}
   @Override
   public Map<String, Object> getComponentConfiguration() {
      return null;
   }
}

文件:CountBolt.java - 

import java.util.Map;
import java.util.HashMap;
import backtype.storm.tuple.Tuple;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;
public class CountBolt implements IRichBolt{
   Map<String, Integer> counters;
   private OutputCollector collector;
   @Override
   public void prepare(Map stormConf, TopologyContext context,
   OutputCollector collector) {
      this.counters = new HashMap<String, Integer>();
      this.collector = collector;
   }
   @Override
   public void execute(Tuple input) {
      String str = input.getString(0);
      if(!counters.containsKey(str)){
         counters.put(str, 1);
      }else {
         Integer c = counters.get(str) +1;
         counters.put(str, c);
      }
      collector.ack(input);
   }
   @Override
   public void cleanup() {
      for(Map.Entry<String, Integer> entry:counters.entrySet()){
         System.out.println(entry.getKey()+" : " + entry.getValue());
      }
   }
   @Override
   public void declareOutputFields(OutputFieldsDeclarer declarer) {
   }
   @Override
   public Map<String, Object> getComponentConfiguration() {
      return null;
   }
}

提交到拓扑

Storm拓扑基本上是一个Thrift结构。 TopologyBuilder类提供了简单而简单的方法来创建复杂的拓扑。 TopologyBuilder类具有设置spout (setSpout)和设置bolt(setBolt)的方法。 最后,TopologyBuilder使用createTopology()来创建拓朴学。 shuffleGrouping和fieldsGrouping方法有助于设置spout和bolt的流分组。

本地群集 - 出于开发目的,我们可以使用LocalCluster对象创建本地群集,然后使用LocalCluster类的submitTopology方法提交拓扑。

文件:KafkaStormSample.java - 

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import backtype.storm.spout.SchemeAsMultiScheme;
import storm.kafka.trident.GlobalPartitionInformation;
import storm.kafka.ZkHosts;
import storm.kafka.Broker;
import storm.kafka.StaticHosts;
import storm.kafka.BrokerHosts;
import storm.kafka.SpoutConfig;
import storm.kafka.KafkaConfig;
import storm.kafka.KafkaSpout;
import storm.kafka.StringScheme;
public class KafkaStormSample {
   public static void main(String[] args) throws Exception{
      Config config = new Config();
      config.setDebug(true);
      config.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
      String zkConnString = "localhost:2181";
      String topic = "my-first-topic";
      BrokerHosts hosts = new ZkHosts(zkConnString);
      SpoutConfig kafkaSpoutConfig = new SpoutConfig (hosts, topic, "/" + topic,    
         UUID.randomUUID().toString());
      kafkaSpoutConfig.bufferSizeBytes = 1024 * 1024 * 4;
      kafkaSpoutConfig.fetchSizeBytes = 1024 * 1024 * 4;
      kafkaSpoutConfig.forceFromStart = true;
      kafkaSpoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
      TopologyBuilder builder = new TopologyBuilder();
      builder.setSpout("kafka-spout", new KafkaSpout(kafkaSpoutCon-fig));
      builder.setBolt("word-spitter", new SplitBolt()).shuffleGroup-ing("kafka-spout");
      builder.setBolt("word-counter", new CountBolt()).shuffleGroup-ing("word-spitter");
      LocalCluster cluster = new LocalCluster();
      cluster.submitTopology("KafkaStormSample", config, builder.create-Topology());
      Thread.sleep(10000);
      cluster.shutdown();
   }
}

在移动编译之前,Kakfa-Storm集成需要馆长ZooKeeper客户端java库。 ZooKeeper 版本2.9.1支持Apache Storm 0.9.5版本(在本教程中使用)。 下载下面指定的jar文件并将其放在java类路径中。

  • curator-client-2.9.1.jar

  • curator-framework-2.9.1.jar

在包含依赖文件后,使用以下命令编译程序,

javac -cp "/path/to/Kafka/apache-storm-0.9.5/lib/*" *.java

执行

启动Kafka Producer CLI(在上一章中介绍),创建一个名为my-first-topic的新主题,并提供一些示例消息,如下所示 -

hello
kafka
storm
spark
test message
another test message

现在使用以下命令执行应用程序 -

java -cp “/path/to/Kafka/apache-storm-0.9.5/lib/*”:. KafkaStormSample

此应用程序的输出示例如下所示 -

storm : 1
test : 2
spark : 1
another : 1
kafka : 1
hello : 1


上一篇: kafka在工业上的应用
下一篇: Kafka和Spark集成
推荐文章
  • 1.环境清单CentOS7 Java8 Maven3.5 MySQL5.7 CAT2.0.0 Tomcat7.02.安装CAT2.0下载CAT安装包:CAT的官方github地址:https://github.com/dianping/cat/tree/master打开页面之后,进行如下操作:2.1
  • 一.安装并启动sendmailyum install -y sendmail systemctl start sendmail二.修改Grafana配置文件,设置发件人vim /etc/grafana/grafana.ini在[smtp]标签下修改配置[smtp] enabled = true ho
  • 想用最简单的方式去理解Elasticsearch能为你做什么,那就是使用它了,让我们开始吧!安装并运行Elasticsearch安装Elasticsearch之前,你需要先安装一个较新的版本的Java,最好的选择是,你可以从www.java.com获得官方提供的最新版本的Java。之后,你可以从el
  • 简介:Elasticsearch是一个分布式、RESTful风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为ElasticStack的核心,它集中存储您的数据,帮助您发现意料之中以及意料之外的情况。版本说明Java环境:JDK1.8.0Elasticsearch:7.2.1OS环境:wi
  • Java9、Java10、Java12和Java13均为短期版本。我们建议您不要使用以上版本,除非您准备好应对这种快速发布节奏。有关JVM支持,请参见Oracle的时间表,网址为:http://www.oracle.com/technetwork/java/eol-135779.html**Elas
  • Elasticsearch是由ShayBanon发起的一个开源搜索服务器项目,2010年2月发布。迄今,该项目已发展成为搜索和数据分析解决方案领域的主要一员,广泛应用于声名卓著或鲜为人知的搜索应用程序。此外,由于其分布式性质和实时功能,许多人把它作为文档数据库。Elasticsearch看名字就能大
学习大纲