Hadoop读取数据
MapReduce - 读取数据
通过InputFormat决定读取的数据的类型,然后拆分成一个个InputSplit,每个InputSplit对应一个Map处理,RecordReader读取InputSplit的内容给Map
InputFormat
决定读取数据的格式,可以是文件或数据库等
功能
- 验证作业输入的正确性,如格式等
- 将输入文件切割成逻辑分片(InputSplit),一个InputSplit将会被分配给一个独立的Map任务
- 提供RecordReader实现,读取InputSplit中的"K-V对"供Mapper使用
方法
List getSplits(): 获取由输入文件计算出输入分片(InputSplit),解决数据或文件分割成片问题
RecordReader createRecordReader(): 创建RecordReader,从InputSplit中读取数据,解决读取分片中数据问题
类结构
TextInputFormat: 输入文件中的每一行就是一个记录,Key是这一行的byte offset,而value是这一行的内容
KeyValueTextInputFormat: 输入文件中每一行就是一个记录,第一个分隔符字符切分每行。在分隔符字符之前的内容为Key,在之后的为Value。分隔符变量通过key.value.separator.in.input.line变量设置,默认为(\t)字符。
NLineInputFormat: 与TextInputFormat一样,但每个数据块必须保证有且只有N行,mapred.line.input.format.linespermap属性,默认为1
SequenceFileInputFormat: 一个用来读取字符流数据的InputFormat,<key,value>为用户自定义的。字符流数据是Hadoop自定义的压缩的二进制数据格式。它用来优化从一个MapReduce任务的输出到另一个MapReduce任务的输入之间的数据传输过程。</key,value>
InputSplit
代表一个个逻辑分片,并没有真正存储数据,只是提供了一个如何将数据分片的方法
Split内有Location信息,利于数据局部化
一个InputSplit给一个单独的Map处理
public abstract class InputSplit {
/**
* 获取Split的大小,支持根据size对InputSplit排序.
*/
public abstract long getLength() throws IOException, InterruptedException;
/**
* 获取存储该分片的数据所在的节点位置.
*/
public abstract String[] getLocations() throws IOException, InterruptedException;
}
RecordReader
将InputSplit拆分成一个个<key,value>对给Map处理,也是实际的文件读取分隔对象</key,value>
问题
大量小文件如何处理
CombineFileInputFormat可以将若干个Split打包成一个,目的是避免过多的Map任务(因为Split的数目决定了Map的数目,大量的Mapper Task创建销毁开销将是巨大的)
怎么计算split的
一般一个split就是一个block(FileInputFormat仅仅拆分比block大的文件),这样做的好处是使得Map可以在存储有当前数据的节点上运行本地的任务,而不需要通过网络进行跨节点的任务调度
通过mapred.min.split.size, mapred.max.split.size, block.size来控制拆分的大小
如果mapred.min.split.size大于block size,则会将两个block合成到一个split,这样有部分block数据需要通过网络读取
如果mapred.max.split.size小于block size,则会将一个block拆成多个split,增加了Map任务数(Map对split进行计算并且上报结果,关闭当前计算打开新的split均需要耗费资源)
先获取文件在HDFS上的路径和Block信息,然后根据splitSize对文件进行切分( splitSize = computeSplitSize(blockSize, minSize, maxSize) ),默认splitSize 就等于blockSize的默认值(64m)
public List<InputSplit> getSplits(JobContext job) throws IOException {
// 首先计算分片的最大和最小值。这两个值将会用来计算分片的大小
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job);
// generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus> files = listStatus(job);
for (FileStatus file: files) {
Path path = file.getPath();
long length = file.getLen();
if (length != 0) {
FileSystem fs = path.getFileSystem(job.getConfiguration());
// 获取该文件所有的block信息列表[hostname, offset, length]
BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
// 判断文件是否可分割,一般是可分割的,但如果文件是压缩的,将不可分割
if (isSplitable(job, path)) {
long blockSize = file.getBlockSize();
// 计算分片大小
// 即 Math.max(minSize, Math.min(maxSize, blockSize));
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
long bytesRemaining = length;
// 循环分片。
// 当剩余数据与分片大小比值大于Split_Slop时,继续分片, 小于等于时,停止分片
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts()));
bytesRemaining -= splitSize;
}
// 处理余下的数据
if (bytesRemaining != 0) {
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts()));
}
} else {
// 不可split,整块返回
splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts()));
}
} else {
// 对于长度为0的文件,创建空Hosts列表,返回
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
// 设置输入文件数量
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
LOG.debug("Total # of splits: " + splits.size());
return splits;
}
分片间的数据如何处理
split是根据文件大小分割的,而通常处理是根据分隔符进行分割的,这样势必存在一条记录横跨两个split
解决办法是只要不是第一个split,都会远程读取一条记录。不是第一个split的都忽略到第一条记录
public class LineRecordReader extends RecordReader<LongWritable, Text> {
private CompressionCodecFactory compressionCodecs = null;
private long start;
private long pos;
private long end;
private LineReader in;
private int maxLineLength;
private LongWritable key = null;
private Text value = null;
// initialize函数即对LineRecordReader的一个初始化
// 主要是计算分片的始末位置,打开输入流以供读取K-V对,处理分片经过压缩的情况等
public void initialize(InputSplit genericSplit, TaskAttemptContext context) throws IOException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();
compressionCodecs = new CompressionCodecFactory(job);
final CompressionCodec codec = compressionCodecs.getCodec(file);
// 打开文件,并定位到分片读取的起始位置
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
boolean skipFirstLine = false;
if (codec != null) {
// 文件是压缩文件的话,直接打开文件
in = new LineReader(codec.createInputStream(fileIn), job);
end = Long.MAX_VALUE;
} else {
// 只要不是第一个split,则忽略本split的第一行数据
if (start != 0) {
skipFirstLine = true;
--start;
// 定位到偏移位置,下次读取就会从偏移位置开始
fileIn.seek(start);
}
in = new LineReader(fileIn, job);
}
if (skipFirstLine) {
// 忽略第一行数据,重新定位start
start += in.readLine(new Text(), 0, (int) Math.min((long) Integer.MAX_VALUE, end - start));
}
this.pos = start;
}
public boolean nextKeyValue() throws IOException {
if (key == null) {
key = new LongWritable();
}
key.set(pos);// key即为偏移量
if (value == null) {
value = new Text();
}
int newSize = 0;
while (pos < end) {
newSize = in.readLine(value, maxLineLength, Math.max((int) Math.min(Integer.MAX_VALUE, end - pos), maxLineLength));
// 读取的数据长度为0,则说明已读完
if (newSize == 0) {
break;
}
pos += newSize;
// 读取的数据长度小于最大行长度,也说明已读取完毕
if (newSize < maxLineLength) {
break;
}
// 执行到此处,说明该行数据没读完,继续读入
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
}
}
原文链接: https://www.yukx.com/bigdata/article/details/874.html 优科学习网Hadoop读取数据
-
MD5(Message-DigestAlgorithm5)是一种广泛使用的散列函数(哈希函数),由美国密码学家罗纳德·李维斯特(RonaldL.Rivest)在1991年设计。MD5的作用是对任意长度的信息生成一个固定长度(128位,即32个十六进制字符)的“指纹”或“消息摘要”,并且几乎不可能找到
-
循环冗余校验(CyclicRedundancyCheck,CRC)是一种用于检测数据传输和存储过程中发生错误的技术,属于一种基于数学原理的错误检测编码(ErrorDetectionCoding)方法。它通过在原始数据上附加一个固定长度的校验码,使得接收端可以通过同样的计算规则对收到的数据进行校验,确
-
AES(AdvancedEncryptionStandard)是一种广泛使用的对称密钥加密算法,它是美国国家标准与技术研究院(NIST)于2001年制定的加密标准,用于替代原有的DES(DataEncryptionStandard)。AES算法以其高效性、安全性和可靠性而著称,在众多应用领域中被广泛
-
RSA(Rivest-Shamir-Adleman)是一种广泛应用的非对称加密算法,由RonRivest、AdiShamir和LenAdleman在1977年提出。其安全性基于数学上的大数因子分解难题,即对于足够大的两个素数p和q而言,已知它们的乘积很容易,但想要从这个乘积中恢复原始的素数则异常困难
-
最小生成树(MinimumSpanningTree,MST)是一种图论算法,用于在一个带权重的无向连通图中找到一棵包括所有顶点且总权重尽可能小的树。常见的最小生成树算法有两种:Prim算法和Kruskal算法。Prim算法原理:Prim算法是一种贪心算法,它从图中的一个顶点开始,逐步增加边,每次都添
-
关于最短路径算法的Java实现,这里简述一下几种常用的算法及其基本原理,并给出一个Dijkstra算法的基本实现框架。Dijkstra算法(适用于无负权边的图)Dijkstra算法用于寻找图中一个顶点到其他所有顶点的最短路径。它维护了一个距离表,用来存储从源点到各个顶点的已知最短距离,并且每次都会选